In 2012, Davenport and Patil’s article in Harvard Business Review titled Data Scientist: The Sexiest Job of the 21st Century, raised the profile of a profession that had been naturally evolving in the modern computing era – an era where data and computing resources are more abundantly and cheaply available than ever before. There was also a shift in our industry leaders adopting a more open and evidence-based approach to guiding the growth of their business. Brilliant data scientists with machine learning and artificial intelligence expertise are invaluable in supporting this new normal.
While there are different opinions on what defines a data scientist, as the leader of the Data Science Practice at Think Big Analytics, the consulting arm of Teradata, I expect data scientist on my team to embody specific characteristics. This expectation is founded on a simple question – “Are you having a measurable and meaningful impact on the business outcome?“
Any data scientist can dig into data, use statistical techniques to find insights and make recommendations for their business partners to consider. A good data scientist makes sure that the business adopts those insights and recommendations by focusing on the problems that are important to the company and making a compelling case grounded in business value. An impactful data scientist can iterate quickly, address a wide variety of business problems for the organization and deliver meaningful business impact swiftly by using automation and getting their insights integrated into production systems. Consequently, impactful data scientists more often answer ‘yes‘ to the question above.
So what makes a Data Scientist impactful? In my experience, they possess skillsets that I broadly characterize as that of a scientist, a programmer, and an effective communicator. Let us look at each of these in turn.
Firstly they are a scientist. Data scientists work in highly ambiguous situations and operate on the edge of uncertainty. Not only are they trying to answer the question, they often have to determine what is the question in the first place. They have to ask vital questions to the understand the context quickly, identify the root of the problem that is worth solving, research and explore the myriad of possible approaches and most of all manage the risk and impact of failure. If you are a scientist or have undertaken research projects, you would recognize these as traits of a scientist immediately.
In addition, data scientists are also programmers. Traditional mathematicians, statistician, and analysts who are comfortable using GUI-driven analytical workbenches that allow them to import data and build models with a few clicks often contest this expectation. They argue that they don’t need computer science skills since they are supported by (a) team of data engineers to find and cleanse their data, and (b) software engineers to take their models and operationalize them by re-writing them for the production environment. However, what happens when data engineers are busy, or the sprint backlog of IT department means the model that a data scientist has just found to make a company millions won’t make it to production for the next 6-9 months? They wait, and their amazing insights have no impact on the business.
Programming and computer science skills are essential for data scientists so that they are not ‘blocked’ by organizational constraints. A data scientist shouldn’t have to wait for someone else to find and wrangle the data they need, nor be afraid of getting their hands dirty with the code to ensure their models make it to production. It also means, data scientist do not become a bottleneck to their organization by automating their solutions for production or automatic reports. Given the highly distributed and large volume transactions in online, mobile and IoT applications means data scientists need to consider the design of their solution for scale. For example, will their real-time personalization model scale to the 100,000 requests per second for their company’s website and mobile app?
Finally, a data scientist should be an effective 2-way communicator. Not only should they empathize to understand the business context and customer needs, but also convey the value of their work in a manner that appeals to them. One of the hardest skill to master for some knowledgeable data scientists is often the ability to influence organizations without authority. A data scientist that goes around asserting that everyone should listen to them because he or she has data and insights without cultivating trust is likely to earn them the title of a prima donna and not achieve the impact that they can with those insights. Effective communication is relatable, precise and concise.
Data scientists with these three broad skillsets are in an excellent position to have a meaningful and measurable impact on the business outcomes, making them highly valuable to any organization. Of course, this list doesn’t talk about innate abilities like creativity, bias for action and a sense of ownership. Neither does it consider the organizational culture that may either support or hider their impact. I have focused on skills that can be developed through training and practice. In fact, these are essential elements to the growth and career paths for my team of brilliant and impactful data scientists at Think Big Analytics.
Credits:
- Web Designer by Mazil from the Noun Project
- developer by Mazil from the Noun Project
- Web Speaker by Mazil from the Noun Project
- Photo by Helloquence on Unsplash